
    -i#                         S r SSKJr  SSKrSSKJrJrJrJ	r	  SSK
Jr  SSKJrJr  SSKJrJr  SS	KJrJrJr   " S
 S\\\5      rg)zKernel ridge regression.    )RealN   )BaseEstimatorMultiOutputMixinRegressorMixin_fit_context)_solve_cholesky_kernel)PAIRWISE_KERNEL_FUNCTIONSpairwise_kernels)Interval
StrOptions)_check_sample_weightcheck_is_fittedvalidate_datac                     ^  \ rS rSr% Sr\" \SSSS9S/\" \" \	R                  " 5       5      S1-  5      \/\" \SSSS9S/\" \SSSS9/\" \SSS	S9/\S/S
.r\\S'    SSSSSSS.S jjrSS jrU 4S jr\" SS9SS j5       rS rSrU =r$ )KernelRidge   a  Kernel ridge regression.

Kernel ridge regression (KRR) combines ridge regression (linear least
squares with l2-norm regularization) with the kernel trick. It thus
learns a linear function in the space induced by the respective kernel and
the data. For non-linear kernels, this corresponds to a non-linear
function in the original space.

The form of the model learned by KRR is identical to support vector
regression (SVR). However, different loss functions are used: KRR uses
squared error loss while support vector regression uses epsilon-insensitive
loss, both combined with l2 regularization. In contrast to SVR, fitting a
KRR model can be done in closed-form and is typically faster for
medium-sized datasets. On the other hand, the learned model is non-sparse
and thus slower than SVR, which learns a sparse model for epsilon > 0, at
prediction-time.

This estimator has built-in support for multi-variate regression
(i.e., when y is a 2d-array of shape [n_samples, n_targets]).

Read more in the :ref:`User Guide <kernel_ridge>`.

Parameters
----------
alpha : float or array-like of shape (n_targets,), default=1.0
    Regularization strength; must be a positive float. Regularization
    improves the conditioning of the problem and reduces the variance of
    the estimates. Larger values specify stronger regularization.
    Alpha corresponds to ``1 / (2C)`` in other linear models such as
    :class:`~sklearn.linear_model.LogisticRegression` or
    :class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are
    assumed to be specific to the targets. Hence they must correspond in
    number. See :ref:`ridge_regression` for formula.

kernel : str or callable, default="linear"
    Kernel mapping used internally. This parameter is directly passed to
    :class:`~sklearn.metrics.pairwise.pairwise_kernels`.
    If `kernel` is a string, it must be one of the metrics
    in `pairwise.PAIRWISE_KERNEL_FUNCTIONS` or "precomputed".
    If `kernel` is "precomputed", X is assumed to be a kernel matrix.
    Alternatively, if `kernel` is a callable function, it is called on
    each pair of instances (rows) and the resulting value recorded. The
    callable should take two rows from X as input and return the
    corresponding kernel value as a single number. This means that
    callables from :mod:`sklearn.metrics.pairwise` are not allowed, as
    they operate on matrices, not single samples. Use the string
    identifying the kernel instead.

gamma : float, default=None
    Gamma parameter for the RBF, laplacian, polynomial, exponential chi2
    and sigmoid kernels. Interpretation of the default value is left to
    the kernel; see the documentation for sklearn.metrics.pairwise.
    Ignored by other kernels.

degree : float, default=3
    Degree of the polynomial kernel. Ignored by other kernels.

coef0 : float, default=1
    Zero coefficient for polynomial and sigmoid kernels.
    Ignored by other kernels.

kernel_params : dict, default=None
    Additional parameters (keyword arguments) for kernel function passed
    as callable object.

Attributes
----------
dual_coef_ : ndarray of shape (n_samples,) or (n_samples, n_targets)
    Representation of weight vector(s) in kernel space

X_fit_ : {ndarray, sparse matrix} of shape (n_samples, n_features)
    Training data, which is also required for prediction. If
    kernel == "precomputed" this is instead the precomputed
    training matrix, of shape (n_samples, n_samples).

n_features_in_ : int
    Number of features seen during :term:`fit`.

    .. versionadded:: 0.24

feature_names_in_ : ndarray of shape (`n_features_in_`,)
    Names of features seen during :term:`fit`. Defined only when `X`
    has feature names that are all strings.

    .. versionadded:: 1.0

See Also
--------
sklearn.gaussian_process.GaussianProcessRegressor : Gaussian
    Process regressor providing automatic kernel hyperparameters
    tuning and predictions uncertainty.
sklearn.linear_model.Ridge : Linear ridge regression.
sklearn.linear_model.RidgeCV : Ridge regression with built-in
    cross-validation.
sklearn.svm.SVR : Support Vector Regression accepting a large variety
    of kernels.

References
----------
* Kevin P. Murphy
  "Machine Learning: A Probabilistic Perspective", The MIT Press
  chapter 14.4.3, pp. 492-493

Examples
--------
>>> from sklearn.kernel_ridge import KernelRidge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.randn(n_samples)
>>> X = rng.randn(n_samples, n_features)
>>> krr = KernelRidge(alpha=1.0)
>>> krr.fit(X, y)
KernelRidge(alpha=1.0)
r   Nleft)closedz
array-likeprecomputedneitheralphakernelgammadegreecoef0kernel_params_parameter_constraintsr   linear   )r   r   r   r   r   c                L    Xl         X l        X0l        X@l        XPl        X`l        g Nr   )selfr   r   r   r   r   r   s          G/var/www/html/venv/lib/python3.13/site-packages/sklearn/kernel_ridge.py__init__KernelRidge.__init__   s#     


*    c                     [        U R                  5      (       a  U R                  =(       d    0 nO$U R                  U R                  U R
                  S.n[        X4U R                  SS.UD6$ )N)r   r   r   T)metricfilter_params)callabler   r   r   r   r   r   )r$   XYparamss       r%   _get_kernelKernelRidge._get_kernel   sU    DKK  ''-2F#zzT[[4::VFWT[[WPVWWr(   c                    > [         TU ]  5       nSUR                  l        U R                  S:H  UR                  l        U$ )NTr   )super__sklearn_tags__
input_tagssparser   pairwise)r$   tags	__class__s     r%   r4   KernelRidge.__sklearn_tags__   s6    w')!%#';;-#? r(   T)prefer_skip_nested_validationc           	         [        XUSSSS9u  pUb   [        U[        5      (       d  [        X15      nU R	                  U5      n[
        R                  " U R                  5      nSn[        UR                  5      S:X  a  UR                  SS5      nSnU R                  S:H  n[        XBXSU5      U l        U(       a  U R                  R                  5       U l        Xl        U $ )a  Fit Kernel Ridge regression model.

Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
    Training data. If kernel == "precomputed" this is instead
    a precomputed kernel matrix, of shape (n_samples, n_samples).

y : array-like of shape (n_samples,) or (n_samples, n_targets)
    Target values.

sample_weight : float or array-like of shape (n_samples,), default=None
    Individual weights for each sample, ignored if None is passed.

Returns
-------
self : object
    Returns the instance itself.
csrcscT)accept_sparsemulti_output	y_numericFr   r   )r   
isinstancefloatr   r0   np
atleast_1dr   lenshapereshaper   r	   
dual_coef_ravelX_fit_)r$   r-   ysample_weightKr   rL   copys           r%   fitKernelRidge.fit   s    , Qn4SW
 $Zu-M-M0BMQdjj)qww<1		"a AE{{m+0uTR"oo335DOr(   c                     [        U 5        [        XSSS9nU R                  XR                  5      n[        R
                  " X R                  5      $ )a  Predict using the kernel ridge model.

Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
    Samples. If kernel == "precomputed" this is instead a
    precomputed kernel matrix, shape = [n_samples,
    n_samples_fitted], where n_samples_fitted is the number of
    samples used in the fitting for this estimator.

Returns
-------
C : ndarray of shape (n_samples,) or (n_samples, n_targets)
    Returns predicted values.
r=   F)r@   reset)r   r   r0   rM   rF   dotrK   )r$   r-   rP   s      r%   predictKernelRidge.predict   sA      	$uMQ,vva))r(   )rM   r   r   r   rK   r   r   r   )r   r#   )__name__
__module____qualname____firstlineno____doc__r   r   r   setr
   keysr,   dictr   __annotations__r&   r0   r4   r   rR   rW   __static_attributes____classcell__)r9   s   @r%   r   r      s    rj 4D8,Gs499;<NO
 4D8$?D!T&9:4tI>?
$D 
 + +"X 5* 6*X* *r(   r   )r]   numbersr   numpyrF   baser   r   r   r   linear_model._ridger	   metrics.pairwiser
   r   utils._param_validationr   r   utils.validationr   r   r   r    r(   r%   <module>rl      s8    
   O O 7 I 9 R R_*"NM _*r(   