
    -iFX                         S r SSKrSSKrSSKJr  SSKJr  SSK	J
r
Jr  SSKJr  SSKJr  SS	KJr  SS
KJr  S rS rS rS rSS jrSS.S jrS rS rS rS rS rS r SS jr!S S jr"S r#S r$S r%S r&g)!zBA collection of utilities to work with sparse matrices and arrays.    N)LinearOperator   )_sparse_min_max_sparse_nan_min_max)_check_sample_weight   )csc_mean_variance_axis0)csr_mean_variance_axis0)incr_mean_variance_axis0c                     [         R                  " U 5      (       a  U R                  O
[        U 5      nSU-  n[	        U5      e)z2Raises a TypeError if X is not a CSR or CSC matrixz,Expected a CSR or CSC sparse matrix, got %s.)spissparseformattype	TypeError)X
input_typeerrs      L/var/www/html/venv/lib/python3.13/site-packages/sklearn/utils/sparsefuncs.py_raise_typeerrorr      s1    [[^^aJ
8:
EC
C.    c                 ,    U S;  a  [        SU -  5      eg )N)r   r   z8Unknown axis value: %d. Use 0 for rows, or 1 for columns)
ValueErroraxiss    r   _raise_error_wrong_axisr       s$    6FM
 	
 r   c                     UR                   S   U R                   S   :X  d   eU =R                  UR                  U R                  SS9-  sl        g)a  Inplace column scaling of a CSR matrix.

Scale each feature of the data matrix by multiplying with specific scale
provided by the caller assuming a (n_samples, n_features) shape.

Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
    Matrix to normalize using the variance of the features.
    It should be of CSR format.

scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
    Array of precomputed feature-wise values to use for scaling.

Examples
--------
>>> from sklearn.utils import sparsefuncs
>>> from scipy import sparse
>>> import numpy as np
>>> indptr = np.array([0, 3, 4, 4, 4])
>>> indices = np.array([0, 1, 2, 2])
>>> data = np.array([8, 1, 2, 5])
>>> scale = np.array([2, 3, 2])
>>> csr = sparse.csr_matrix((data, indices, indptr))
>>> csr.todense()
matrix([[8, 1, 2],
        [0, 0, 5],
        [0, 0, 0],
        [0, 0, 0]])
>>> sparsefuncs.inplace_csr_column_scale(csr, scale)
>>> csr.todense()
matrix([[16,  3,  4],
        [ 0,  0, 10],
        [ 0,  0,  0],
        [ 0,  0,  0]])
r   r   clip)modeN)shapedatatakeindicesr   scales     r   inplace_csr_column_scaler&   '   sB    J ;;q>QWWQZ'''FFejjj00Fr   c                     UR                   S   U R                   S   :X  d   eU =R                  [        R                  " U[        R                  " U R
                  5      5      -  sl        g)a  Inplace row scaling of a CSR matrix.

Scale each sample of the data matrix by multiplying with specific scale
provided by the caller assuming a (n_samples, n_features) shape.

Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
    Matrix to be scaled. It should be of CSR format.

scale : ndarray of float of shape (n_samples,)
    Array of precomputed sample-wise values to use for scaling.
r   N)r    r!   nprepeatdiffindptrr$   s     r   inplace_csr_row_scaler,   P   sH     ;;q>QWWQZ'''FFbiirwwqxx011Fr   c                 l   [        U5        [        R                  " U 5      (       a4  U R                  S:X  a$  US:X  a
  [	        XUS9$ [        U R                  X#S9$ [        R                  " U 5      (       a4  U R                  S:X  a$  US:X  a
  [        XUS9$ [	        U R                  X#S9$ [        U 5        g)a  Compute mean and variance along an axis on a CSR or CSC matrix.

Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
    Input data. It can be of CSR or CSC format.

axis : {0, 1}
    Axis along which the axis should be computed.

weights : ndarray of shape (n_samples,) or (n_features,), default=None
    If axis is set to 0 shape is (n_samples,) or
    if axis is set to 1 shape is (n_features,).
    If it is set to None, then samples are equally weighted.

    .. versionadded:: 0.24

return_sum_weights : bool, default=False
    If True, returns the sum of weights seen for each feature
    if `axis=0` or each sample if `axis=1`.

    .. versionadded:: 0.24

Returns
-------

means : ndarray of shape (n_features,), dtype=floating
    Feature-wise means.

variances : ndarray of shape (n_features,), dtype=floating
    Feature-wise variances.

sum_weights : ndarray of shape (n_features,), dtype=floating
    Returned if `return_sum_weights` is `True`.

Examples
--------
>>> from sklearn.utils import sparsefuncs
>>> from scipy import sparse
>>> import numpy as np
>>> indptr = np.array([0, 3, 4, 4, 4])
>>> indices = np.array([0, 1, 2, 2])
>>> data = np.array([8, 1, 2, 5])
>>> scale = np.array([2, 3, 2])
>>> csr = sparse.csr_matrix((data, indices, indptr))
>>> csr.todense()
matrix([[8, 1, 2],
        [0, 0, 5],
        [0, 0, 0],
        [0, 0, 0]])
>>> sparsefuncs.mean_variance_axis(csr, axis=0)
(array([2.  , 0.25, 1.75]), array([12.    ,  0.1875,  4.1875]))
csrr   )weightsreturn_sum_weightscscN)r   r   r   r   _csr_mean_var_axis0_csc_mean_var_axis0Tr   )r   r   r/   r0   s       r   mean_variance_axisr5   b   s    l D!	{{1~~!((e+19&7I  'W  
QAHH-19&7I  'W  	r   )r/   c                   [        U5        [        R                  " U 5      (       a  U R                  S;   d  [	        U 5        [
        R                  " U5      S:X  a)  [
        R                  " UR                  XBR                  S9n[
        R                  " U5      [
        R                  " U5      s=:X  a  [
        R                  " U5      :X  d  O  [        S5      eUS:X  a[  [
        R                  " U5      U R                  S   :w  a3  [        SU R                  S    S[
        R                  " U5       S35      eOZ[
        R                  " U5      U R                  S   :w  a3  [        S	U R                  S    S[
        R                  " U5       S35      eUS:X  a  U R                  OU n Ub  [        XPU R                  S9n[        XX4US
9$ )a
  Compute incremental mean and variance along an axis on a CSR or CSC matrix.

last_mean, last_var are the statistics computed at the last step by this
function. Both must be initialized to 0-arrays of the proper size, i.e.
the number of features in X. last_n is the number of samples encountered
until now.

Parameters
----------
X : CSR or CSC sparse matrix of shape (n_samples, n_features)
    Input data.

axis : {0, 1}
    Axis along which the axis should be computed.

last_mean : ndarray of shape (n_features,) or (n_samples,), dtype=floating
    Array of means to update with the new data X.
    Should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1.

last_var : ndarray of shape (n_features,) or (n_samples,), dtype=floating
    Array of variances to update with the new data X.
    Should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1.

last_n : float or ndarray of shape (n_features,) or (n_samples,),             dtype=floating
    Sum of the weights seen so far, excluding the current weights
    If not float, it should be of shape (n_features,) if
    axis=0 or (n_samples,) if axis=1. If float it corresponds to
    having same weights for all samples (or features).

weights : ndarray of shape (n_samples,) or (n_features,), default=None
    If axis is set to 0 shape is (n_samples,) or
    if axis is set to 1 shape is (n_features,).
    If it is set to None, then samples are equally weighted.

    .. versionadded:: 0.24

Returns
-------
means : ndarray of shape (n_features,) or (n_samples,), dtype=floating
    Updated feature-wise means if axis = 0 or
    sample-wise means if axis = 1.

variances : ndarray of shape (n_features,) or (n_samples,), dtype=floating
    Updated feature-wise variances if axis = 0 or
    sample-wise variances if axis = 1.

n : ndarray of shape (n_features,) or (n_samples,), dtype=integral
    Updated number of seen samples per feature if axis=0
    or number of seen features per sample if axis=1.

    If weights is not None, n is a sum of the weights of the seen
    samples or features instead of the actual number of seen
    samples or features.

Notes
-----
NaNs are ignored in the algorithm.

Examples
--------
>>> from sklearn.utils import sparsefuncs
>>> from scipy import sparse
>>> import numpy as np
>>> indptr = np.array([0, 3, 4, 4, 4])
>>> indices = np.array([0, 1, 2, 2])
>>> data = np.array([8, 1, 2, 5])
>>> scale = np.array([2, 3, 2])
>>> csr = sparse.csr_matrix((data, indices, indptr))
>>> csr.todense()
matrix([[8, 1, 2],
        [0, 0, 5],
        [0, 0, 0],
        [0, 0, 0]])
>>> sparsefuncs.incr_mean_variance_axis(
...     csr, axis=0, last_mean=np.zeros(3), last_var=np.zeros(3), last_n=2
... )
(array([1.33, 0.167, 1.17]), array([8.88, 0.139, 3.47]),
array([6., 6., 6.]))
)r1   r.   r   )dtypez8last_mean, last_var, last_n do not have the same shapes.r   zHIf axis=1, then last_mean, last_n, last_var should be of size n_samples z (Got z).zIIf axis=0, then last_mean, last_n, last_var should be of size n_features )	last_meanlast_varlast_nr/   )r   r   r   r   r   r(   sizefullr    r7   r   r4   r   _incr_mean_var_axis0)r   r   r8   r9   r:   r/   s         r   incr_mean_variance_axisr>      ss   b D!KKNNqxx>9	wwv!&HGGI"''("3FrwwvFSTTqy779+""#''!*VBGGI4F3GrK  , 779+##$771:,fRWWY5G4HL 
 qyaA&wA	' r   c                    [         R                  " U 5      (       a'  U R                  S:X  a  [        U R                  U5        g[         R                  " U 5      (       a  U R                  S:X  a  [        X5        g[        U 5        g)a  Inplace column scaling of a CSC/CSR matrix.

Scale each feature of the data matrix by multiplying with specific scale
provided by the caller assuming a (n_samples, n_features) shape.

Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
    Matrix to normalize using the variance of the features. It should be
    of CSC or CSR format.

scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
    Array of precomputed feature-wise values to use for scaling.

Examples
--------
>>> from sklearn.utils import sparsefuncs
>>> from scipy import sparse
>>> import numpy as np
>>> indptr = np.array([0, 3, 4, 4, 4])
>>> indices = np.array([0, 1, 2, 2])
>>> data = np.array([8, 1, 2, 5])
>>> scale = np.array([2, 3, 2])
>>> csr = sparse.csr_matrix((data, indices, indptr))
>>> csr.todense()
matrix([[8, 1, 2],
        [0, 0, 5],
        [0, 0, 0],
        [0, 0, 0]])
>>> sparsefuncs.inplace_column_scale(csr, scale)
>>> csr.todense()
matrix([[16,  3,  4],
        [ 0,  0, 10],
        [ 0,  0,  0],
        [ 0,  0,  0]])
r1   r.   N)r   r   r   r,   r4   r&   r   r$   s     r   inplace_column_scaler@   #  sS    J 
{{1~~!((e+acc5)	QAHH- *r   c                    [         R                  " U 5      (       a'  U R                  S:X  a  [        U R                  U5        g[         R                  " U 5      (       a  U R                  S:X  a  [        X5        g[        U 5        g)a  Inplace row scaling of a CSR or CSC matrix.

Scale each row of the data matrix by multiplying with specific scale
provided by the caller assuming a (n_samples, n_features) shape.

Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
    Matrix to be scaled. It should be of CSR or CSC format.

scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
    Array of precomputed sample-wise values to use for scaling.

Examples
--------
>>> from sklearn.utils import sparsefuncs
>>> from scipy import sparse
>>> import numpy as np
>>> indptr = np.array([0, 2, 3, 4, 5])
>>> indices = np.array([0, 1, 2, 3, 3])
>>> data = np.array([8, 1, 2, 5, 6])
>>> scale = np.array([2, 3, 4, 5])
>>> csr = sparse.csr_matrix((data, indices, indptr))
>>> csr.todense()
matrix([[8, 1, 0, 0],
        [0, 0, 2, 0],
        [0, 0, 0, 5],
        [0, 0, 0, 6]])
>>> sparsefuncs.inplace_row_scale(csr, scale)
>>> csr.todense()
 matrix([[16,  2,  0,  0],
         [ 0,  0,  6,  0],
         [ 0,  0,  0, 20],
         [ 0,  0,  0, 30]])
r1   r.   N)r   r   r   r&   r4   r,   r   r$   s     r   inplace_row_scalerB   P  sS    H 
{{1~~!((e+ e,	QAHH-a'r   c                 8   X4 H-  n[        U[        R                  5      (       d  M$  [        S5      e   US:  a  XR                  S   -  nUS:  a  X R                  S   -  nU R
                  U:H  nXR
                  U R
                  U:H  '   X R
                  U'   g)a#  Swap two rows of a CSC matrix in-place.

Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
    Matrix whose two rows are to be swapped. It should be of
    CSC format.

m : int
    Index of the row of X to be swapped.

n : int
    Index of the row of X to be swapped.
 m and n should be valid integersr   N)
isinstancer(   ndarrayr   r    r#   )r   mntm_masks        r   inplace_swap_row_cscrK   |  s     Va$$>??  	1u	WWQZ1u	WWQZYY!^F !IIaii1nIIfr   c           	      0   X4 H-  n[        U[        R                  5      (       d  M$  [        S5      e   US:  a  XR                  S   -  nUS:  a  X R                  S   -  nX:  a  X!p!U R
                  nXA   nXAS-      nXB   nXBS-      nXe-
  n	X-
  n
X:w  aB  U R
                  US-   U=== X-
  -  sss& XZ-   U R
                  US-   '   X-
  U R
                  U'   [        R                  " U R                  SU U R                  Xx U R                  Xg U R                  XV U R                  US /5      U l        [        R                  " U R                  SU U R                  Xx U R                  Xg U R                  XV U R                  US /5      U l        g)a#  Swap two rows of a CSR matrix in-place.

Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
    Matrix whose two rows are to be swapped. It should be of
    CSR format.

m : int
    Index of the row of X to be swapped.

n : int
    Index of the row of X to be swapped.
rD   r   r   r   N)	rE   r(   rF   r   r    r+   concatenater#   r!   )r   rG   rH   rI   r+   m_startm_stopn_startn_stopnz_mnz_ns              r   inplace_swap_row_csrrT     s    Va$$>??  	1u	WWQZ1u	WWQZ 	u1XXFiGE]FiGE]FDD|	Qt{*!.QmIIhwIIg%IIf%IIg%IIfg	
AI ^^FF8GFF7"FF6"FF7"FF67O	
AFr   c                     [         R                  " U 5      (       a  U R                  S:X  a  [        XU5        g[         R                  " U 5      (       a  U R                  S:X  a  [	        XU5        g[        U 5        g)a'  
Swap two rows of a CSC/CSR matrix in-place.

Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
    Matrix whose two rows are to be swapped. It should be of CSR or
    CSC format.

m : int
    Index of the row of X to be swapped.

n : int
    Index of the row of X to be swapped.

Examples
--------
>>> from sklearn.utils import sparsefuncs
>>> from scipy import sparse
>>> import numpy as np
>>> indptr = np.array([0, 2, 3, 3, 3])
>>> indices = np.array([0, 2, 2])
>>> data = np.array([8, 2, 5])
>>> csr = sparse.csr_matrix((data, indices, indptr))
>>> csr.todense()
matrix([[8, 0, 2],
        [0, 0, 5],
        [0, 0, 0],
        [0, 0, 0]])
>>> sparsefuncs.inplace_swap_row(csr, 0, 1)
>>> csr.todense()
matrix([[0, 0, 5],
        [8, 0, 2],
        [0, 0, 0],
        [0, 0, 0]])
r1   r.   N)r   r   r   rK   rT   r   r   rG   rH   s      r   inplace_swap_rowrW     sQ    J 
{{1~~!((e+Q1%	QAHH-Q1%r   c                 V   US:  a  XR                   S   -  nUS:  a  X R                   S   -  n[        R                  " U 5      (       a  U R                  S:X  a  [	        XU5        g[        R                  " U 5      (       a  U R                  S:X  a  [        XU5        g[        U 5        g)a6  
Swap two columns of a CSC/CSR matrix in-place.

Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
    Matrix whose two columns are to be swapped. It should be of
    CSR or CSC format.

m : int
    Index of the column of X to be swapped.

n : int
    Index of the column of X to be swapped.

Examples
--------
>>> from sklearn.utils import sparsefuncs
>>> from scipy import sparse
>>> import numpy as np
>>> indptr = np.array([0, 2, 3, 3, 3])
>>> indices = np.array([0, 2, 2])
>>> data = np.array([8, 2, 5])
>>> csr = sparse.csr_matrix((data, indices, indptr))
>>> csr.todense()
matrix([[8, 0, 2],
        [0, 0, 5],
        [0, 0, 0],
        [0, 0, 0]])
>>> sparsefuncs.inplace_swap_column(csr, 0, 1)
>>> csr.todense()
matrix([[0, 8, 2],
        [0, 0, 5],
        [0, 0, 0],
        [0, 0, 0]])
r   r   r1   r.   N)r    r   r   r   rT   rK   r   rV   s      r   inplace_swap_columnrY     s}    J 	1u	WWQZ1u	WWQZ	{{1~~!((e+Q1%	QAHH-Q1%r   c                     [         R                  " U 5      (       a)  U R                  S;   a  U(       a	  [        XS9$ [	        XS9$ [        U 5        g)aY  Compute minimum and maximum along an axis on a CSR or CSC matrix.

 Optionally ignore NaN values.

Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
    Input data. It should be of CSR or CSC format.

axis : {0, 1}
    Axis along which the axis should be computed.

ignore_nan : bool, default=False
    Ignore or passing through NaN values.

    .. versionadded:: 0.20

Returns
-------

mins : ndarray of shape (n_features,), dtype={np.float32, np.float64}
    Feature-wise minima.

maxs : ndarray of shape (n_features,), dtype={np.float32, np.float64}
    Feature-wise maxima.
)r.   r1   r   N)r   r   r   r   r   r   )r   r   
ignore_nans      r   min_max_axisr\   6  s=    6 
{{1~~!((n4&q44"100r   c                    US:X  a  SnO=US:X  a  SnO4U R                   S:w  a$  [        SR                  U R                   5      5      eUcD  Uc  U R                  $ [        R                  " [        R
                  " U R                  5      U5      $ US:X  a8  [        R
                  " U R                  5      nUc  UR                  S5      $ X2-  $ US:X  a  Uc,  [        R                  " U R                  U R                  S   S9$ [        R                  " U[        R
                  " U R                  5      5      n[        R                  " U R                  U R                  S   US	9$ [        S
R                  U5      5      e)a  A variant of X.getnnz() with extension to weighting on axis 0.

Useful in efficiently calculating multilabel metrics.

Parameters
----------
X : sparse matrix of shape (n_samples, n_labels)
    Input data. It should be of CSR format.

axis : {0, 1}, default=None
    The axis on which the data is aggregated.

sample_weight : array-like of shape (n_samples,), default=None
    Weight for each row of X.

Returns
-------
nnz : int, float, ndarray of shape (n_samples,) or ndarray of shape (n_features,)
    Number of non-zero values in the array along a given axis. Otherwise,
    the total number of non-zero values in the array is returned.
r   r   r.   z#Expected CSR sparse format, got {0}intp)	minlength)ra   r/   zUnsupported axis: {0})r   r   nnzr(   dotr*   r+   astypebincountr#   r    r)   r   )r   r   sample_weightoutr/   s        r   count_nonzerorh   Z  s+   , rz		
U	=DDQXXNOO | 55L66"''!((+];;	ggahh ::f%%""	 ;;qyyAGGAJ??iirwwqxx/@AG;;qyyAGGAJPP077=>>r   c                     [        U 5      U-   nU(       d  [        R                  $ [        R                  " U S:  5      n[	        US5      u  pEU R                  5         U(       a  [        X@X15      $ [        US-
  XU5      [        X@X15      -   S-  $ )zCompute the median of data with n_zeros additional zeros.

This function is used to support sparse matrices; it modifies data
in-place.
r   r   r   g       @)lenr(   nanrh   divmodsort_get_elem_at_rank)r!   n_zerosn_elems
n_negativemiddleis_odds         r   _get_medianrt     s     $i'!Gvv!!$(+JGQ'NFIIK zCC 	&1*d@
F*
>	? r   c                 4    X:  a  X   $ X-
  U:  a  gXU-
     $ )z@Find the value in data augmented with n_zeros for the given rankr    )rankr!   rq   ro   s       r   rn   rn     s+    z7"wr   c                    [         R                  " U 5      (       a  U R                  S:X  d  [        SU R                  -  5      eU R                  nU R
                  u  p#[        R                  " U5      n[        [        R                  " U5      5       HE  u  nu  pg[        R                  " U R                  Xg 5      nX(R                  -
  n	[        X5      XE'   MG     U$ )a  Find the median across axis 0 of a CSC matrix.

It is equivalent to doing np.median(X, axis=0).

Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
    Input data. It should be of CSC format.

Returns
-------
median : ndarray of shape (n_features,)
    Median.
r1   z%Expected matrix of CSC format, got %s)r   r   r   r   r+   r    r(   zeros	enumerate	itertoolspairwisecopyr!   r;   rt   )
r   r+   	n_samples
n_featuresmedianf_indstartendr!   nzs
             r   csc_median_axis_0r     s     KKNNqxx50?!((JKKXXFGGIXXj!F(););F)CD|wwqvve()"#D-	  E Mr   c           	         ^ ^^ TSSS24   mT R                   m[        U U4S jU U4S jUU4S jUU4S jT R                  T R                  S9$ )a  Create an implicitly offset linear operator.

This is used by PCA on sparse data to avoid densifying the whole data
matrix.

Params
------
    X : sparse matrix of shape (n_samples, n_features)
    offset : ndarray of shape (n_features,)

Returns
-------
centered : LinearOperator
Nc                    > TU -  TU -  -
  $ Nrv   xr   offsets    r   <lambda>)_implicit_column_offset.<locals>.<lambda>      Q!+r   c                    > TU -  TU -  -
  $ r   rv   r   s    r   r   r     r   r   c                 6   > TU -  TU R                  5       -  -
  $ r   )sumr   XTr   s    r   r   r     s    "q&FQUUW$45r   c                 V   > TU -  TR                   U R                  SS9S S S 24   -  -
  $ )Nr   r   )r4   r   r   s    r   r   r     s*    "q&688aeeemD!G.D#DDr   )matvecmatmatrmatvecrmatmatr7   r    )r4   r   r7   r    )r   r   r   s   ``@r   _implicit_column_offsetr     sB     D!G_F	
B++5Dgggg r   )NF)F)NN)'__doc__r{   numpyr(   scipy.sparsesparser   scipy.sparse.linalgr   utils.fixesr   r   utils.validationr   sparsefuncs_fastr	   r3   r
   r2   r   r=   r   r   r&   r,   r5   r>   r@   rB   rK   rT   rW   rY   r\   rh   rt   rn   r   r   rv   r   r   <module>r      s    H
    . > 3

&1R2$K\ NR pf*Z)X:<~*Z.b!H3?l, >r   