
    -i                     ,    S SK r S SKrS SKJr  S rS rg)    N)suppressc                     [        U [        R                  5      (       + =(       a7    [        U [        R                  5      =(       a    [        R
                  " U 5      $ )a"  Test if x is NaN.

This function is meant to overcome the issue that np.isnan does not allow
non-numerical types as input, and that np.nan is not float('nan').

Parameters
----------
x : any type
    Any scalar value.

Returns
-------
bool
    Returns true if x is NaN, and false otherwise.

Examples
--------
>>> import numpy as np
>>> from sklearn.utils._missing import is_scalar_nan
>>> is_scalar_nan(np.nan)
True
>>> is_scalar_nan(float("nan"))
True
>>> is_scalar_nan(None)
False
>>> is_scalar_nan("")
False
>>> is_scalar_nan([np.nan])
False
)
isinstancenumbersIntegralRealmathisnan)xs    I/var/www/html/venv/lib/python3.13/site-packages/sklearn/utils/_missing.pyis_scalar_nanr   	   s@    @ q'**++ 	q',,'	JJqM    c                 h    [        [        5         SSKJn  XL sSSS5        $ ! , (       d  f       g= f)a\  Test if x is pandas.NA.

We intentionally do not use this function to return `True` for `pd.NA` in
`is_scalar_nan`, because estimators that support `pd.NA` are the exception
rather than the rule at the moment. When `pd.NA` is more universally
supported, we may reconsider this decision.

Parameters
----------
x : any type

Returns
-------
boolean
r   )NANF)r   ImportErrorpandasr   )r   r   s     r   is_pandas_nar   /   s%      
+	w 
		
 s   	#
1)r	   r   
contextlibr   r   r    r   r   <module>r      s      #Lr   