
    -i                     x    S SK rSSKJr  SSKJrJr  SSKJrJ	r	   " S S5      r
 " S	 S
\
5      r " S S\
5      rg)    N   )check_matplotlib_support)_interval_max_min_ratio_validate_score_name   )learning_curvevalidation_curvec            	       0    \ rS rSrSSSSSSSSS.S jrSrg)	_BaseCurveDisplay   NFtestfill_betweenaxnegate_score
score_name
score_typestd_display_styleline_kwfill_between_kwerrorbar_kwc                   [        U R                  R                   S35        SS KJn
  Uc  U
R                  5       u  pU(       a  U R                  * U R                  * pOU R                  U R                  pUS;  a  [        SU S35      eUS;  a  [        SU S35      eUS	:X  a  S
U0nOUS:X  a  SU0nOXS.nUS;   an  Uc  0 n/ U l	        UR                  5        H@  u  nnU R                  R                  " UR                  " UUR                  SS94SU0UD66   MB     S U l        S U l        US:X  a  U	c  0 n	/ U l        UR                  5        HP  u  nnU R                  R                  UR                   " UUR                  SS9UR#                  SS94SU0U	D65        MR     Su  U l	        U l        OUS:X  a  Uc  0 nSS0n0 UEUEn/ U l        UR                  5        Hn  u  nnU R                  R                  UR$                  " UUR                  SS9UR#                  SS9-
  UR                  SS9UR#                  SS9-   40 UD65        Mp     Uc  U R&                  OUnUR)                  5         [+        U5      S:  a  UR-                  5       S::  a  SOSnOSnUR/                  U5        UR1                  U 5        X l        UR4                  U l        g )Nz.plotr   )errorbarr   NzUnknown std_display_style: z7. Should be one of 'errorbar', 'fill_between', or None.)r   trainbothzUnknown score_type: z.. Should be one of 'test', 'train', or 'both'.r   Trainr   Test)r   r   )r   Nr   )axislabelr   )NNr   alphag      ?   symlogloglinear)r   	__class____name__matplotlib.pyplotpyplotsubplotstrain_scorestest_scores
ValueErrorlines_itemsappendplotmean	errorbar_fill_between_r   stdr   r   legendr   min
set_xscale
set_ylabelax_figurefigure_)selfx_datar   r   r   r   r   r   r   r   plt_r*   r+   scores
line_labelscoredefault_fill_between_kwxscales                      P/var/www/html/venv/lib/python3.13/site-packages/sklearn/model_selection/_plot.py_plot_curve_BaseCurveDisplay._plot_curve   s    	!DNN$;$;#<E!BC':LLNEA)-):):(:T=M=M<M+(,(9(94;K;K+$FF-.?-@ A8 8 
 66&zl 3& & 
  |,F6!k*F+AF 66DK%+\\^!
E""WW


* ) "	 &4 "DN!%D
*" DN%+\\^!
E%%KK


*		q	) )	
 & &4 /9+DK+.0&"$'.n#L!8LOLO!#D%+\\^!
E""))OO


*UYYAY->>


*UYYAY->> *	 &4 )3(:T__


		
 #6*Q.!'!2XFF
f
&yy    )r9   r2   r;   r3   r-   )r&   
__module____qualname____firstlineno__rF   __static_attributes__ rH   rE   r   r      s(    
 (o! o!rH   r   c                       \ rS rSrSrSS.S jr SSSSSSSSS	.S
 jjr\S\R                  " SSS5      SSSSSSSS\R                  SSSSSSSSSS.S j5       rSrg)LearningCurveDisplay~   a
  Learning Curve visualization.

It is recommended to use
:meth:`~sklearn.model_selection.LearningCurveDisplay.from_estimator` to
create a :class:`~sklearn.model_selection.LearningCurveDisplay` instance.
All parameters are stored as attributes.

Read more in the :ref:`User Guide <visualizations>` for general information
about the visualization API and
:ref:`detailed documentation <learning_curve>` regarding the learning
curve visualization.

.. versionadded:: 1.2

Parameters
----------
train_sizes : ndarray of shape (n_unique_ticks,)
    Numbers of training examples that has been used to generate the
    learning curve.

train_scores : ndarray of shape (n_ticks, n_cv_folds)
    Scores on training sets.

test_scores : ndarray of shape (n_ticks, n_cv_folds)
    Scores on test set.

score_name : str, default=None
    The name of the score used in `learning_curve`. It will override the name
    inferred from the `scoring` parameter. If `score` is `None`, we use `"Score"` if
    `negate_score` is `False` and `"Negative score"` otherwise. If `scoring` is a
    string or a callable, we infer the name. We replace `_` by spaces and capitalize
    the first letter. We remove `neg_` and replace it by `"Negative"` if
    `negate_score` is `False` or just remove it otherwise.

Attributes
----------
ax_ : matplotlib Axes
    Axes with the learning curve.

figure_ : matplotlib Figure
    Figure containing the learning curve.

errorbar_ : list of matplotlib Artist or None
    When the `std_display_style` is `"errorbar"`, this is a list of
    `matplotlib.container.ErrorbarContainer` objects. If another style is
    used, `errorbar_` is `None`.

lines_ : list of matplotlib Artist or None
    When the `std_display_style` is `"fill_between"`, this is a list of
    `matplotlib.lines.Line2D` objects corresponding to the mean train and
    test scores. If another style is used, `line_` is `None`.

fill_between_ : list of matplotlib Artist or None
    When the `std_display_style` is `"fill_between"`, this is a list of
    `matplotlib.collections.PolyCollection` objects. If another style is
    used, `fill_between_` is `None`.

See Also
--------
sklearn.model_selection.learning_curve : Compute the learning curve.

Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import LearningCurveDisplay, learning_curve
>>> from sklearn.tree import DecisionTreeClassifier
>>> X, y = load_iris(return_X_y=True)
>>> tree = DecisionTreeClassifier(random_state=0)
>>> train_sizes, train_scores, test_scores = learning_curve(
...     tree, X, y)
>>> display = LearningCurveDisplay(train_sizes=train_sizes,
...     train_scores=train_scores, test_scores=test_scores, score_name="Score")
>>> display.plot()
<...>
>>> plt.show()
Nr   c                4    Xl         X l        X0l        X@l        g Ntrain_sizesr*   r+   r   )r<   rU   r*   r+   r   s        rE   __init__LearningCurveDisplay.__init__   s    &(&$rH   Fr   r   r   r   r   r   r   r   r   c                ~    U R                  U R                  UUUUUUUUS9	  U R                  R                  S5        U $ )a$  Plot visualization.

Parameters
----------
ax : matplotlib Axes, default=None
    Axes object to plot on. If `None`, a new figure and axes is
    created.

negate_score : bool, default=False
    Whether or not to negate the scores obtained through
    :func:`~sklearn.model_selection.learning_curve`. This is
    particularly useful when using the error denoted by `neg_*` in
    `scikit-learn`.

score_name : str, default=None
    The name of the score used to decorate the y-axis of the plot. It will
    override the name inferred from the `scoring` parameter. If `score` is
    `None`, we use `"Score"` if `negate_score` is `False` and `"Negative score"`
    otherwise. If `scoring` is a string or a callable, we infer the name. We
    replace `_` by spaces and capitalize the first letter. We remove `neg_` and
    replace it by `"Negative"` if `negate_score` is
    `False` or just remove it otherwise.

score_type : {"test", "train", "both"}, default="both"
    The type of score to plot. Can be one of `"test"`, `"train"`, or
    `"both"`.

std_display_style : {"errorbar", "fill_between"} or None, default="fill_between"
    The style used to display the score standard deviation around the
    mean score. If None, no standard deviation representation is
    displayed.

line_kw : dict, default=None
    Additional keyword arguments passed to the `plt.plot` used to draw
    the mean score.

fill_between_kw : dict, default=None
    Additional keyword arguments passed to the `plt.fill_between` used
    to draw the score standard deviation.

errorbar_kw : dict, default=None
    Additional keyword arguments passed to the `plt.errorbar` used to
    draw mean score and standard deviation score.

Returns
-------
display : :class:`~sklearn.model_selection.LearningCurveDisplay`
    Object that stores computed values.
r   z%Number of samples in the training set)rF   rU   r9   
set_xlabel	r<   r   r   r   r   r   r   r   r   s	            rE   r0   LearningCurveDisplay.plot   sS    z 	%!!/+# 	 
	
 	CDrH   g?g      ?r!   allr   )groupsrU   cvscoringexploit_incremental_learningn_jobspre_dispatchverboseshufflerandom_stateerror_score
fit_paramsr   r   r   r   r   r   r   r   c                    [        U R                   S35        [        UUU5      n[        UUUUUUUUU	U
UUUUSUS9u  nnnU " UUUUS9nUR	                  UUUUUUUS9$ )a]  Create a learning curve display from an estimator.

Read more in the :ref:`User Guide <visualizations>` for general
information about the visualization API and :ref:`detailed
documentation <learning_curve>` regarding the learning curve
visualization.

Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
    An object of that type which is cloned for each validation.

X : array-like of shape (n_samples, n_features)
    Training data, where `n_samples` is the number of samples and
    `n_features` is the number of features.

y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
    Target relative to X for classification or regression;
    None for unsupervised learning.

groups : array-like of shape (n_samples,), default=None
    Group labels for the samples used while splitting the dataset into
    train/test set. Only used in conjunction with a "Group" :term:`cv`
    instance (e.g., :class:`GroupKFold`).

train_sizes : array-like of shape (n_ticks,),                 default=np.linspace(0.1, 1.0, 5)
    Relative or absolute numbers of training examples that will be used
    to generate the learning curve. If the dtype is float, it is
    regarded as a fraction of the maximum size of the training set
    (that is determined by the selected validation method), i.e. it has
    to be within (0, 1]. Otherwise it is interpreted as absolute sizes
    of the training sets. Note that for classification the number of
    samples usually have to be big enough to contain at least one
    sample from each class.

cv : int, cross-validation generator or an iterable, default=None
    Determines the cross-validation splitting strategy.
    Possible inputs for cv are:

    - None, to use the default 5-fold cross validation,
    - int, to specify the number of folds in a `(Stratified)KFold`,
    - :term:`CV splitter`,
    - An iterable yielding (train, test) splits as arrays of indices.

    For int/None inputs, if the estimator is a classifier and `y` is
    either binary or multiclass,
    :class:`~sklearn.model_selection.StratifiedKFold` is used. In all
    other cases, :class:`~sklearn.model_selection.KFold` is used. These
    splitters are instantiated with `shuffle=False` so the splits will
    be the same across calls.

    Refer :ref:`User Guide <cross_validation>` for the various
    cross-validation strategies that can be used here.

scoring : str or callable, default=None
    The scoring method to use when calculating the learning curve. Options:

    - str: see :ref:`scoring_string_names` for options.
    - callable: a scorer callable object (e.g., function) with signature
      ``scorer(estimator, X, y)``. See :ref:`scoring_callable` for details.
    - `None`: the `estimator`'s
      :ref:`default evaluation criterion <scoring_api_overview>` is used.

exploit_incremental_learning : bool, default=False
    If the estimator supports incremental learning, this will be
    used to speed up fitting for different training set sizes.

n_jobs : int, default=None
    Number of jobs to run in parallel. Training the estimator and
    computing the score are parallelized over the different training
    and test sets. `None` means 1 unless in a
    :obj:`joblib.parallel_backend` context. `-1` means using all
    processors. See :term:`Glossary <n_jobs>` for more details.

pre_dispatch : int or str, default='all'
    Number of predispatched jobs for parallel execution (default is
    all). The option can reduce the allocated memory. The str can
    be an expression like '2*n_jobs'.

verbose : int, default=0
    Controls the verbosity: the higher, the more messages.

shuffle : bool, default=False
    Whether to shuffle training data before taking prefixes of it
    based on`train_sizes`.

random_state : int, RandomState instance or None, default=None
    Used when `shuffle` is True. Pass an int for reproducible
    output across multiple function calls.
    See :term:`Glossary <random_state>`.

error_score : 'raise' or numeric, default=np.nan
    Value to assign to the score if an error occurs in estimator
    fitting. If set to 'raise', the error is raised. If a numeric value
    is given, FitFailedWarning is raised.

fit_params : dict, default=None
    Parameters to pass to the fit method of the estimator.

ax : matplotlib Axes, default=None
    Axes object to plot on. If `None`, a new figure and axes is
    created.

negate_score : bool, default=False
    Whether or not to negate the scores obtained through
    :func:`~sklearn.model_selection.learning_curve`. This is
    particularly useful when using the error denoted by `neg_*` in
    `scikit-learn`.

score_name : str, default=None
    The name of the score used to decorate the y-axis of the plot. It will
    override the name inferred from the `scoring` parameter. If `score` is
    `None`, we use `"Score"` if `negate_score` is `False` and `"Negative score"`
    otherwise. If `scoring` is a string or a callable, we infer the name. We
    replace `_` by spaces and capitalize the first letter. We remove `neg_` and
    replace it by `"Negative"` if `negate_score` is
    `False` or just remove it otherwise.

score_type : {"test", "train", "both"}, default="both"
    The type of score to plot. Can be one of `"test"`, `"train"`, or
    `"both"`.

std_display_style : {"errorbar", "fill_between"} or None, default="fill_between"
    The style used to display the score standard deviation around the
    mean score. If `None`, no representation of the standard deviation
    is displayed.

line_kw : dict, default=None
    Additional keyword arguments passed to the `plt.plot` used to draw
    the mean score.

fill_between_kw : dict, default=None
    Additional keyword arguments passed to the `plt.fill_between` used
    to draw the score standard deviation.

errorbar_kw : dict, default=None
    Additional keyword arguments passed to the `plt.errorbar` used to
    draw mean score and standard deviation score.

Returns
-------
display : :class:`~sklearn.model_selection.LearningCurveDisplay`
    Object that stores computed values.

Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import LearningCurveDisplay
>>> from sklearn.tree import DecisionTreeClassifier
>>> X, y = load_iris(return_X_y=True)
>>> tree = DecisionTreeClassifier(random_state=0)
>>> LearningCurveDisplay.from_estimator(tree, X, y)
<...>
>>> plt.show()
.from_estimatorF)r^   rU   r_   r`   ra   rb   rc   rd   re   rf   rg   return_timesrh   rT   r   r   r   r   r   r   r   )r   r&   r   r   r0   )cls	estimatorXyr^   rU   r_   r`   ra   rb   rc   rd   re   rf   rg   rh   r   r   r   r   r   r   r   r   r*   r+   vizs                              rE   from_estimator#LearningCurveDisplay.from_estimator  s    r 	!CLL>!AB)*g|L
1?#)E%%#!!2
.\;& #%#!	
 xx%!/+#  
 	
rH   )r   r+   r*   rU   rS   )r&   rI   rJ   rK   __doc__rV   r0   classmethodnplinspacenanrr   rL   rM   rH   rE   rO   rO   ~   s    L\ NR % I (IV  KKS!,%*FF(3]
 ]
rH   rO   c                       \ rS rSrSrSS.S jr SSSSSSSSS	.S
 jjr\SSSSSS\R                  SSSSSSSSSS.S j5       r
Srg)ValidationCurveDisplayi  a  Validation Curve visualization.

It is recommended to use
:meth:`~sklearn.model_selection.ValidationCurveDisplay.from_estimator` to
create a :class:`~sklearn.model_selection.ValidationCurveDisplay` instance.
All parameters are stored as attributes.

Read more in the :ref:`User Guide <visualizations>` for general information
about the visualization API and :ref:`detailed documentation
<validation_curve>` regarding the validation curve visualization.

.. versionadded:: 1.3

Parameters
----------
param_name : str
    Name of the parameter that has been varied.

param_range : array-like of shape (n_ticks,)
    The values of the parameter that have been evaluated.

train_scores : ndarray of shape (n_ticks, n_cv_folds)
    Scores on training sets.

test_scores : ndarray of shape (n_ticks, n_cv_folds)
    Scores on test set.

score_name : str, default=None
    The name of the score used in `validation_curve`. It will override the name
    inferred from the `scoring` parameter. If `score` is `None`, we use `"Score"` if
    `negate_score` is `False` and `"Negative score"` otherwise. If `scoring` is a
    string or a callable, we infer the name. We replace `_` by spaces and capitalize
    the first letter. We remove `neg_` and replace it by `"Negative"` if
    `negate_score` is `False` or just remove it otherwise.

Attributes
----------
ax_ : matplotlib Axes
    Axes with the validation curve.

figure_ : matplotlib Figure
    Figure containing the validation curve.

errorbar_ : list of matplotlib Artist or None
    When the `std_display_style` is `"errorbar"`, this is a list of
    `matplotlib.container.ErrorbarContainer` objects. If another style is
    used, `errorbar_` is `None`.

lines_ : list of matplotlib Artist or None
    When the `std_display_style` is `"fill_between"`, this is a list of
    `matplotlib.lines.Line2D` objects corresponding to the mean train and
    test scores. If another style is used, `line_` is `None`.

fill_between_ : list of matplotlib Artist or None
    When the `std_display_style` is `"fill_between"`, this is a list of
    `matplotlib.collections.PolyCollection` objects. If another style is
    used, `fill_between_` is `None`.

See Also
--------
sklearn.model_selection.validation_curve : Compute the validation curve.

Examples
--------
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import ValidationCurveDisplay, validation_curve
>>> from sklearn.linear_model import LogisticRegression
>>> X, y = make_classification(n_samples=1_000, random_state=0)
>>> logistic_regression = LogisticRegression()
>>> param_name, param_range = "C", np.logspace(-8, 3, 10)
>>> train_scores, test_scores = validation_curve(
...     logistic_regression, X, y, param_name=param_name, param_range=param_range
... )
>>> display = ValidationCurveDisplay(
...     param_name=param_name, param_range=param_range,
...     train_scores=train_scores, test_scores=test_scores, score_name="Score"
... )
>>> display.plot()
<...>
>>> plt.show()
NrQ   c                @    Xl         X l        X0l        X@l        XPl        g rS   
param_nameparam_ranger*   r+   r   )r<   r}   r~   r*   r+   r   s         rE   rV   ValidationCurveDisplay.__init__T  s      %&(&$rH   Fr   r   rX   c                    U R                  U R                  UUUUUUUUS9	  U R                  R                  U R                   5        U $ )a(  Plot visualization.

Parameters
----------
ax : matplotlib Axes, default=None
    Axes object to plot on. If `None`, a new figure and axes is
    created.

negate_score : bool, default=False
    Whether or not to negate the scores obtained through
    :func:`~sklearn.model_selection.validation_curve`. This is
    particularly useful when using the error denoted by `neg_*` in
    `scikit-learn`.

score_name : str, default=None
    The name of the score used to decorate the y-axis of the plot. It will
    override the name inferred from the `scoring` parameter. If `score` is
    `None`, we use `"Score"` if `negate_score` is `False` and `"Negative score"`
    otherwise. If `scoring` is a string or a callable, we infer the name. We
    replace `_` by spaces and capitalize the first letter. We remove `neg_` and
    replace it by `"Negative"` if `negate_score` is
    `False` or just remove it otherwise.

score_type : {"test", "train", "both"}, default="both"
    The type of score to plot. Can be one of `"test"`, `"train"`, or
    `"both"`.

std_display_style : {"errorbar", "fill_between"} or None, default="fill_between"
    The style used to display the score standard deviation around the
    mean score. If None, no standard deviation representation is
    displayed.

line_kw : dict, default=None
    Additional keyword arguments passed to the `plt.plot` used to draw
    the mean score.

fill_between_kw : dict, default=None
    Additional keyword arguments passed to the `plt.fill_between` used
    to draw the score standard deviation.

errorbar_kw : dict, default=None
    Additional keyword arguments passed to the `plt.errorbar` used to
    draw mean score and standard deviation score.

Returns
-------
display : :class:`~sklearn.model_selection.ValidationCurveDisplay`
    Object that stores computed values.
r   )rF   r~   r9   rZ   r}   r[   s	            rE   r0   ValidationCurveDisplay.plot]  sY    z 	%!!/+# 	 
	
 	t/1rH   r]   r   )r^   r_   r`   rb   rc   rd   rg   rh   r   r   r   r   r   r   r   r   c                    [        U R                   S35        [        UX5      n[        UUUUUUUUU	U
UUUS9u  nnU " U[        R
                  " U5      UUUS9nUR                  UUUUUUUS9$ )a{  Create a validation curve display from an estimator.

Read more in the :ref:`User Guide <visualizations>` for general
information about the visualization API and :ref:`detailed
documentation <validation_curve>` regarding the validation curve
visualization.

Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
    An object of that type which is cloned for each validation.

X : array-like of shape (n_samples, n_features)
    Training data, where `n_samples` is the number of samples and
    `n_features` is the number of features.

y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
    Target relative to X for classification or regression;
    None for unsupervised learning.

param_name : str
    Name of the parameter that will be varied.

param_range : array-like of shape (n_values,)
    The values of the parameter that will be evaluated.

groups : array-like of shape (n_samples,), default=None
    Group labels for the samples used while splitting the dataset into
    train/test set. Only used in conjunction with a "Group" :term:`cv`
    instance (e.g., :class:`GroupKFold`).

cv : int, cross-validation generator or an iterable, default=None
    Determines the cross-validation splitting strategy.
    Possible inputs for cv are:

    - None, to use the default 5-fold cross validation,
    - int, to specify the number of folds in a `(Stratified)KFold`,
    - :term:`CV splitter`,
    - An iterable yielding (train, test) splits as arrays of indices.

    For int/None inputs, if the estimator is a classifier and `y` is
    either binary or multiclass,
    :class:`~sklearn.model_selection.StratifiedKFold` is used. In all
    other cases, :class:`~sklearn.model_selection.KFold` is used. These
    splitters are instantiated with `shuffle=False` so the splits will
    be the same across calls.

    Refer :ref:`User Guide <cross_validation>` for the various
    cross-validation strategies that can be used here.

scoring : str or callable, default=None
    Scoring method to use when computing the validation curve. Options:

    - str: see :ref:`scoring_string_names` for options.
    - callable: a scorer callable object (e.g., function) with signature
      ``scorer(estimator, X, y)``. See :ref:`scoring_callable` for details.
    - `None`: the `estimator`'s
      :ref:`default evaluation criterion <scoring_api_overview>` is used.

n_jobs : int, default=None
    Number of jobs to run in parallel. Training the estimator and
    computing the score are parallelized over the different training
    and test sets. `None` means 1 unless in a
    :obj:`joblib.parallel_backend` context. `-1` means using all
    processors. See :term:`Glossary <n_jobs>` for more details.

pre_dispatch : int or str, default='all'
    Number of predispatched jobs for parallel execution (default is
    all). The option can reduce the allocated memory. The str can
    be an expression like '2*n_jobs'.

verbose : int, default=0
    Controls the verbosity: the higher, the more messages.

error_score : 'raise' or numeric, default=np.nan
    Value to assign to the score if an error occurs in estimator
    fitting. If set to 'raise', the error is raised. If a numeric value
    is given, FitFailedWarning is raised.

fit_params : dict, default=None
    Parameters to pass to the fit method of the estimator.

ax : matplotlib Axes, default=None
    Axes object to plot on. If `None`, a new figure and axes is
    created.

negate_score : bool, default=False
    Whether or not to negate the scores obtained through
    :func:`~sklearn.model_selection.validation_curve`. This is
    particularly useful when using the error denoted by `neg_*` in
    `scikit-learn`.

score_name : str, default=None
    The name of the score used to decorate the y-axis of the plot. It will
    override the name inferred from the `scoring` parameter. If `score` is
    `None`, we use `"Score"` if `negate_score` is `False` and `"Negative score"`
    otherwise. If `scoring` is a string or a callable, we infer the name. We
    replace `_` by spaces and capitalize the first letter. We remove `neg_` and
    replace it by `"Negative"` if `negate_score` is
    `False` or just remove it otherwise.

score_type : {"test", "train", "both"}, default="both"
    The type of score to plot. Can be one of `"test"`, `"train"`, or
    `"both"`.

std_display_style : {"errorbar", "fill_between"} or None, default="fill_between"
    The style used to display the score standard deviation around the
    mean score. If `None`, no representation of the standard deviation
    is displayed.

line_kw : dict, default=None
    Additional keyword arguments passed to the `plt.plot` used to draw
    the mean score.

fill_between_kw : dict, default=None
    Additional keyword arguments passed to the `plt.fill_between` used
    to draw the score standard deviation.

errorbar_kw : dict, default=None
    Additional keyword arguments passed to the `plt.errorbar` used to
    draw mean score and standard deviation score.

Returns
-------
display : :class:`~sklearn.model_selection.ValidationCurveDisplay`
    Object that stores computed values.

Examples
--------
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import ValidationCurveDisplay
>>> from sklearn.linear_model import LogisticRegression
>>> X, y = make_classification(n_samples=1_000, random_state=0)
>>> logistic_regression = LogisticRegression()
>>> param_name, param_range = "C", np.logspace(-8, 3, 10)
>>> ValidationCurveDisplay.from_estimator(
...     logistic_regression, X, y, param_name=param_name,
...     param_range=param_range,
... )
<...>
>>> plt.show()
rj   )
r}   r~   r^   r_   r`   rb   rc   rd   rg   rh   r|   rl   )r   r&   r   r	   rv   asarrayr0   )rm   rn   ro   rp   r}   r~   r^   r_   r`   rb   rc   rd   rg   rh   r   r   r   r   r   r   r   r   r*   r+   rq   s                            rE   rr   %ValidationCurveDisplay.from_estimator  s    T 	!CLL>!AB)*gL
$4!#%#!%
!k  !

;/%#!
 xx%!/+#  
 	
rH   )r}   r~   r   r+   r*   rS   )r&   rI   rJ   rK   rt   rV   r0   ru   rv   rx   rr   rL   rM   rH   rE   rz   rz     s    Rj QU% I (IV  FF(/L
 L
rH   rz   )numpyrv   utils._optional_dependenciesr   utils._plottingr   r   _validationr   r	   r   rO   rz   rM   rH   rE   <module>r      s?     C K 9p! p!f~
, ~
Bv
. v
rH   