ó
    ê-iŒ  ã                   óB   • S SK Jr  SSKJrJr  SSKJr   " S S\5      rg)	é    )ÚRealé   )ÚIntervalÚ
StrOptionsé   )ÚBaseSGDClassifierc                   ó.  ^ • \ rS rSr% Sr0 \R                  Er\\S'   \R                  S5        \R                  S5        \R                  \" 1 Sk5      S/\" \SSS	S
9/\" \SSSS
9/\" \SSS	S
9/S.5        SSSSSSSSSSSSSSSSS.U 4S jjrSrU =r$ )Ú
Perceptroné
   ar  Linear perceptron classifier.

The implementation is a wrapper around :class:`~sklearn.linear_model.SGDClassifier`
by fixing the `loss` and `learning_rate` parameters as::

    SGDClassifier(loss="perceptron", learning_rate="constant")

Other available parameters are described below and are forwarded to
:class:`~sklearn.linear_model.SGDClassifier`.

Read more in the :ref:`User Guide <perceptron>`.

Parameters
----------

penalty : {'l2','l1','elasticnet'}, default=None
    The penalty (aka regularization term) to be used.

alpha : float, default=0.0001
    Constant that multiplies the regularization term if regularization is
    used.

l1_ratio : float, default=0.15
    The Elastic Net mixing parameter, with `0 <= l1_ratio <= 1`.
    `l1_ratio=0` corresponds to L2 penalty, `l1_ratio=1` to L1.
    Only used if `penalty='elasticnet'`.

    .. versionadded:: 0.24

fit_intercept : bool, default=True
    Whether the intercept should be estimated or not. If False, the
    data is assumed to be already centered.

max_iter : int, default=1000
    The maximum number of passes over the training data (aka epochs).
    It only impacts the behavior in the ``fit`` method, and not the
    :meth:`partial_fit` method.

    .. versionadded:: 0.19

tol : float or None, default=1e-3
    The stopping criterion. If it is not None, the iterations will stop
    when (loss > previous_loss - tol).

    .. versionadded:: 0.19

shuffle : bool, default=True
    Whether or not the training data should be shuffled after each epoch.

verbose : int, default=0
    The verbosity level.

eta0 : float, default=1
    Constant by which the updates are multiplied.

n_jobs : int, default=None
    The number of CPUs to use to do the OVA (One Versus All, for
    multi-class problems) computation.
    ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
    ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
    for more details.

random_state : int, RandomState instance or None, default=0
    Used to shuffle the training data, when ``shuffle`` is set to
    ``True``. Pass an int for reproducible output across multiple
    function calls.
    See :term:`Glossary <random_state>`.

early_stopping : bool, default=False
    Whether to use early stopping to terminate training when validation
    score is not improving. If set to True, it will automatically set aside
    a stratified fraction of training data as validation and terminate
    training when validation score is not improving by at least `tol` for
    `n_iter_no_change` consecutive epochs.

    .. versionadded:: 0.20

validation_fraction : float, default=0.1
    The proportion of training data to set aside as validation set for
    early stopping. Must be between 0 and 1.
    Only used if early_stopping is True.

    .. versionadded:: 0.20

n_iter_no_change : int, default=5
    Number of iterations with no improvement to wait before early stopping.

    .. versionadded:: 0.20

class_weight : dict, {class_label: weight} or "balanced", default=None
    Preset for the class_weight fit parameter.

    Weights associated with classes. If not given, all classes
    are supposed to have weight one.

    The "balanced" mode uses the values of y to automatically adjust
    weights inversely proportional to class frequencies in the input data
    as ``n_samples / (n_classes * np.bincount(y))``.

warm_start : bool, default=False
    When set to True, reuse the solution of the previous call to fit as
    initialization, otherwise, just erase the previous solution. See
    :term:`the Glossary <warm_start>`.

Attributes
----------
classes_ : ndarray of shape (n_classes,)
    The unique classes labels.

coef_ : ndarray of shape (1, n_features) if n_classes == 2 else             (n_classes, n_features)
    Weights assigned to the features.

intercept_ : ndarray of shape (1,) if n_classes == 2 else (n_classes,)
    Constants in decision function.

n_features_in_ : int
    Number of features seen during :term:`fit`.

    .. versionadded:: 0.24

feature_names_in_ : ndarray of shape (`n_features_in_`,)
    Names of features seen during :term:`fit`. Defined only when `X`
    has feature names that are all strings.

    .. versionadded:: 1.0

n_iter_ : int
    The actual number of iterations to reach the stopping criterion.
    For multiclass fits, it is the maximum over every binary fit.

t_ : int
    Number of weight updates performed during training.
    Same as ``(n_iter_ * n_samples + 1)``.

See Also
--------
sklearn.linear_model.SGDClassifier : Linear classifiers
    (SVM, logistic regression, etc.) with SGD training.

Notes
-----
``Perceptron`` is a classification algorithm which shares the same
underlying implementation with ``SGDClassifier``. In fact,
``Perceptron()`` is equivalent to `SGDClassifier(loss="perceptron",
eta0=1, learning_rate="constant", penalty=None)`.

References
----------
https://en.wikipedia.org/wiki/Perceptron and references therein.

Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.linear_model import Perceptron
>>> X, y = load_digits(return_X_y=True)
>>> clf = Perceptron(tol=1e-3, random_state=0)
>>> clf.fit(X, y)
Perceptron()
>>> clf.score(X, y)
0.939...
Ú_parameter_constraintsÚlossÚaverage>   Úl1Úl2Ú
elasticnetNr   Úleft)Úclosedr   Úboth)ÚpenaltyÚalphaÚl1_ratioÚeta0g-Cëâ6?g333333Ã?Tiè  gü©ñÒMbP?g      ð?Fgš™™™™™¹?é   )r   r   r   Úfit_interceptÚmax_iterÚtolÚshuffleÚverboser   Ún_jobsÚrandom_stateÚearly_stoppingÚvalidation_fractionÚn_iter_no_changeÚclass_weightÚ
warm_startc                óD   >• [         TU ]  SUUUUUUUUUSU	UUUSUUU
S9  g )NÚ
perceptronÚconstantg      à?)r   r   r   r   r   r   r   r   r   r    Úlearning_rater   r!   r"   r#   Úpower_tr%   r$   r   )ÚsuperÚ__init__)Úselfr   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   Ú	__class__s                    €ÚS/var/www/html/venv/lib/python3.13/site-packages/sklearn/linear_model/_perceptron.pyr,   ÚPerceptron.__init__º   sP   ø€ ô( 	‰ÑØØØØØ'ØØØØØ%Ø$ØØ)Ø 3Ø-ØØ!Ø%Øð' 	ò 	
ó    © )Ú__name__Ú
__module__Ú__qualname__Ú__firstlineno__Ú__doc__r   r   ÚdictÚ__annotations__ÚpopÚupdater   r   r   r,   Ú__static_attributes__Ú__classcell__)r.   s   @r/   r
   r
   
   sÐ   ø‡ ñaðF $PÐ&7×&NÑ&NÐ#OÐ˜DÓOØ×Ñ˜vÔ&Ø×Ñ˜yÔ)Ø×!Ñ!á"Ò#=Ó>ÀÐEÙ˜t Q¨°VÑ<Ð=Ù! $¨¨1°VÑ<Ð=Ù˜d A t°FÑ;Ð<ñ		
ôð ØØØØØØØØØØØØØØØ÷%(
ö (
r1   r
   N)Únumbersr   Úutils._param_validationr   r   Ú_stochastic_gradientr   r
   r2   r1   r/   Ú<module>rA      s   ðõ ç :Ý 3ôX
Ð"õ X
r1   