
    -i@K                     l    S SK Jr  SSKJr  SSKJrJr  SSKJrJ	r	J
r
   " S S\	5      r " S	 S
\
5      rg)    )Real   )_fit_context)Interval
StrOptions   )DEFAULT_EPSILONBaseSGDClassifierBaseSGDRegressorc                      ^  \ rS rSr% Sr0 \R                  E\" SS15      /\" \	SSSS9/S	.Er\
\S
'   SSSSSSSSSSSSSSSS.U 4S jjr\" SS9SS j5       r\" SS9SS j5       rSrU =r$ )PassiveAggressiveClassifier   a  Passive Aggressive Classifier.

Read more in the :ref:`User Guide <passive_aggressive>`.

Parameters
----------
C : float, default=1.0
    Maximum step size (regularization). Defaults to 1.0.

fit_intercept : bool, default=True
    Whether the intercept should be estimated or not. If False, the
    data is assumed to be already centered.

max_iter : int, default=1000
    The maximum number of passes over the training data (aka epochs).
    It only impacts the behavior in the ``fit`` method, and not the
    :meth:`~sklearn.linear_model.PassiveAggressiveClassifier.partial_fit` method.

    .. versionadded:: 0.19

tol : float or None, default=1e-3
    The stopping criterion. If it is not None, the iterations will stop
    when (loss > previous_loss - tol).

    .. versionadded:: 0.19

early_stopping : bool, default=False
    Whether to use early stopping to terminate training when validation
    score is not improving. If set to True, it will automatically set aside
    a stratified fraction of training data as validation and terminate
    training when validation score is not improving by at least `tol` for
    `n_iter_no_change` consecutive epochs.

    .. versionadded:: 0.20

validation_fraction : float, default=0.1
    The proportion of training data to set aside as validation set for
    early stopping. Must be between 0 and 1.
    Only used if early_stopping is True.

    .. versionadded:: 0.20

n_iter_no_change : int, default=5
    Number of iterations with no improvement to wait before early stopping.

    .. versionadded:: 0.20

shuffle : bool, default=True
    Whether or not the training data should be shuffled after each epoch.

verbose : int, default=0
    The verbosity level.

loss : str, default="hinge"
    The loss function to be used:
    hinge: equivalent to PA-I in the reference paper.
    squared_hinge: equivalent to PA-II in the reference paper.

n_jobs : int or None, default=None
    The number of CPUs to use to do the OVA (One Versus All, for
    multi-class problems) computation.
    ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
    ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
    for more details.

random_state : int, RandomState instance, default=None
    Used to shuffle the training data, when ``shuffle`` is set to
    ``True``. Pass an int for reproducible output across multiple
    function calls.
    See :term:`Glossary <random_state>`.

warm_start : bool, default=False
    When set to True, reuse the solution of the previous call to fit as
    initialization, otherwise, just erase the previous solution.
    See :term:`the Glossary <warm_start>`.

    Repeatedly calling fit or partial_fit when warm_start is True can
    result in a different solution than when calling fit a single time
    because of the way the data is shuffled.

class_weight : dict, {class_label: weight} or "balanced" or None,             default=None
    Preset for the class_weight fit parameter.

    Weights associated with classes. If not given, all classes
    are supposed to have weight one.

    The "balanced" mode uses the values of y to automatically adjust
    weights inversely proportional to class frequencies in the input data
    as ``n_samples / (n_classes * np.bincount(y))``.

    .. versionadded:: 0.17
       parameter *class_weight* to automatically weight samples.

average : bool or int, default=False
    When set to True, computes the averaged SGD weights and stores the
    result in the ``coef_`` attribute. If set to an int greater than 1,
    averaging will begin once the total number of samples seen reaches
    average. So average=10 will begin averaging after seeing 10 samples.

    .. versionadded:: 0.19
       parameter *average* to use weights averaging in SGD.

Attributes
----------
coef_ : ndarray of shape (1, n_features) if n_classes == 2 else             (n_classes, n_features)
    Weights assigned to the features.

intercept_ : ndarray of shape (1,) if n_classes == 2 else (n_classes,)
    Constants in decision function.

n_features_in_ : int
    Number of features seen during :term:`fit`.

    .. versionadded:: 0.24

feature_names_in_ : ndarray of shape (`n_features_in_`,)
    Names of features seen during :term:`fit`. Defined only when `X`
    has feature names that are all strings.

    .. versionadded:: 1.0

n_iter_ : int
    The actual number of iterations to reach the stopping criterion.
    For multiclass fits, it is the maximum over every binary fit.

classes_ : ndarray of shape (n_classes,)
    The unique classes labels.

t_ : int
    Number of weight updates performed during training.
    Same as ``(n_iter_ * n_samples + 1)``.

See Also
--------
SGDClassifier : Incrementally trained logistic regression.
Perceptron : Linear perceptron classifier.

References
----------
Online Passive-Aggressive Algorithms
<http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)

Examples
--------
>>> from sklearn.linear_model import PassiveAggressiveClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_features=4, random_state=0)
>>> clf = PassiveAggressiveClassifier(max_iter=1000, random_state=0,
... tol=1e-3)
>>> clf.fit(X, y)
PassiveAggressiveClassifier(random_state=0)
>>> print(clf.coef_)
[[0.26642044 0.45070924 0.67251877 0.64185414]]
>>> print(clf.intercept_)
[1.84127814]
>>> print(clf.predict([[0, 0, 0, 0]]))
[1]
hingesquared_hinger   Nrightclosed)lossC_parameter_constraints      ?T  MbP?F皙?   )r   fit_interceptmax_itertolearly_stoppingvalidation_fractionn_iter_no_changeshuffleverboser   n_jobsrandom_state
warm_startclass_weightaveragec                T   > [         TU ]  S UUUUUUUU	USUUUUS9  Xl        Xl        g )Nr   )penaltyr   r   r   r   r    r!   r"   r#   r%   eta0r&   r'   r(   r$   super__init__r   r   )selfr   r   r   r   r   r    r!   r"   r#   r   r$   r%   r&   r'   r(   	__class__s                   [/var/www/html/venv/lib/python3.13/site-packages/sklearn/linear_model/_passive_aggressive.pyr.   $PassiveAggressiveClassifier.__init__   sP    & 	') 3-%!% 	 	
$ 	    prefer_skip_nested_validationc                     [        U S5      (       d*  U R                  SS9  U R                  S:X  a  [        S5      eU R                  S:X  a  SOSnU R                  UUS	U R                  SUS
USSSS9$ )a  Fit linear model with Passive Aggressive algorithm.

Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
    Subset of the training data.

y : array-like of shape (n_samples,)
    Subset of the target values.

classes : ndarray of shape (n_classes,)
    Classes across all calls to partial_fit.
    Can be obtained by via `np.unique(y_all)`, where y_all is the
    target vector of the entire dataset.
    This argument is required for the first call to partial_fit
    and can be omitted in the subsequent calls.
    Note that y doesn't need to contain all labels in `classes`.

Returns
-------
self : object
    Fitted estimator.
classes_Tfor_partial_fitbalanceda\  class_weight 'balanced' is not supported for partial_fit. For 'balanced' weights, use `sklearn.utils.compute_class_weight` with `class_weight='balanced'`. In place of y you can use a large enough subset of the full training set target to properly estimate the class frequency distributions. Pass the resulting weights as the class_weight parameter.r   pa1pa2r   r   N)	alphar   r   learning_rater   classessample_weight	coef_initintercept_init)hasattr_more_validate_paramsr'   
ValueErrorr   _partial_fitr   )r/   Xyr?   lrs        r1   partial_fit'PassiveAggressiveClassifier.partial_fit   s    2 tZ((&&t&<  J. !
 
 ii7*U  ff ! 
 	
r3   c                     U R                  5         U R                  S:X  a  SOSnU R                  UUSU R                  SUUUS9$ )a  Fit linear model with Passive Aggressive algorithm.

Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
    Training data.

y : array-like of shape (n_samples,)
    Target values.

coef_init : ndarray of shape (n_classes, n_features)
    The initial coefficients to warm-start the optimization.

intercept_init : ndarray of shape (n_classes,)
    The initial intercept to warm-start the optimization.

Returns
-------
self : object
    Fitted estimator.
r   r;   r<   r   r=   r   r   r>   rA   rB   rD   r   _fitr   r/   rG   rH   rA   rB   rI   s         r1   fitPassiveAggressiveClassifier.fit  sT    . 	""$ii7*Uyyff)  	
 		
r3   r   r   )NNN)__name__
__module____qualname____firstlineno____doc__r
   r   r   r   r   dict__annotations__r.   r   rJ   rQ   __static_attributes____classcell__r0   s   @r1   r   r      s    `D$

2
2$Wo678tQW56$D  #& &P 55
 65
n 5"
 6"
r3   r   c                      ^  \ rS rSr% Sr0 \R                  E\" SS15      /\" \	SSSS9/\" \	SSS	S9/S
.Er\
\S'   SSSSSSSSSS\SSSS.U 4S jjr\" SS9S 5       r\" SS9SS j5       rSrU =r$ )PassiveAggressiveRegressori:  a  Passive Aggressive Regressor.

Read more in the :ref:`User Guide <passive_aggressive>`.

Parameters
----------

C : float, default=1.0
    Maximum step size (regularization). Defaults to 1.0.

fit_intercept : bool, default=True
    Whether the intercept should be estimated or not. If False, the
    data is assumed to be already centered. Defaults to True.

max_iter : int, default=1000
    The maximum number of passes over the training data (aka epochs).
    It only impacts the behavior in the ``fit`` method, and not the
    :meth:`~sklearn.linear_model.PassiveAggressiveRegressor.partial_fit` method.

    .. versionadded:: 0.19

tol : float or None, default=1e-3
    The stopping criterion. If it is not None, the iterations will stop
    when (loss > previous_loss - tol).

    .. versionadded:: 0.19

early_stopping : bool, default=False
    Whether to use early stopping to terminate training when validation.
    score is not improving. If set to True, it will automatically set aside
    a fraction of training data as validation and terminate
    training when validation score is not improving by at least tol for
    n_iter_no_change consecutive epochs.

    .. versionadded:: 0.20

validation_fraction : float, default=0.1
    The proportion of training data to set aside as validation set for
    early stopping. Must be between 0 and 1.
    Only used if early_stopping is True.

    .. versionadded:: 0.20

n_iter_no_change : int, default=5
    Number of iterations with no improvement to wait before early stopping.

    .. versionadded:: 0.20

shuffle : bool, default=True
    Whether or not the training data should be shuffled after each epoch.

verbose : int, default=0
    The verbosity level.

loss : str, default="epsilon_insensitive"
    The loss function to be used:
    epsilon_insensitive: equivalent to PA-I in the reference paper.
    squared_epsilon_insensitive: equivalent to PA-II in the reference
    paper.

epsilon : float, default=0.1
    If the difference between the current prediction and the correct label
    is below this threshold, the model is not updated.

random_state : int, RandomState instance, default=None
    Used to shuffle the training data, when ``shuffle`` is set to
    ``True``. Pass an int for reproducible output across multiple
    function calls.
    See :term:`Glossary <random_state>`.

warm_start : bool, default=False
    When set to True, reuse the solution of the previous call to fit as
    initialization, otherwise, just erase the previous solution.
    See :term:`the Glossary <warm_start>`.

    Repeatedly calling fit or partial_fit when warm_start is True can
    result in a different solution than when calling fit a single time
    because of the way the data is shuffled.

average : bool or int, default=False
    When set to True, computes the averaged SGD weights and stores the
    result in the ``coef_`` attribute. If set to an int greater than 1,
    averaging will begin once the total number of samples seen reaches
    average. So average=10 will begin averaging after seeing 10 samples.

    .. versionadded:: 0.19
       parameter *average* to use weights averaging in SGD.

Attributes
----------
coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,            n_features]
    Weights assigned to the features.

intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]
    Constants in decision function.

n_features_in_ : int
    Number of features seen during :term:`fit`.

    .. versionadded:: 0.24

feature_names_in_ : ndarray of shape (`n_features_in_`,)
    Names of features seen during :term:`fit`. Defined only when `X`
    has feature names that are all strings.

    .. versionadded:: 1.0

n_iter_ : int
    The actual number of iterations to reach the stopping criterion.

t_ : int
    Number of weight updates performed during training.
    Same as ``(n_iter_ * n_samples + 1)``.

See Also
--------
SGDRegressor : Linear model fitted by minimizing a regularized
    empirical loss with SGD.

References
----------
Online Passive-Aggressive Algorithms
<http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006).

Examples
--------
>>> from sklearn.linear_model import PassiveAggressiveRegressor
>>> from sklearn.datasets import make_regression

>>> X, y = make_regression(n_features=4, random_state=0)
>>> regr = PassiveAggressiveRegressor(max_iter=100, random_state=0,
... tol=1e-3)
>>> regr.fit(X, y)
PassiveAggressiveRegressor(max_iter=100, random_state=0)
>>> print(regr.coef_)
[20.48736655 34.18818427 67.59122734 87.94731329]
>>> print(regr.intercept_)
[-0.02306214]
>>> print(regr.predict([[0, 0, 0, 0]]))
[-0.02306214]
epsilon_insensitivesquared_epsilon_insensitiver   Nr   r   left)r   r   epsilonr   r   Tr   r   Fr   r   )r   r   r   r   r   r    r!   r"   r#   r   rd   r%   r&   r(   c                T   > [         TU ]  S SUSUUUUUUUU	UUUS9  Xl        Xl        g )Nr   r   )r*   l1_ratiord   r+   r   r   r   r   r    r!   r"   r#   r%   r&   r(   r,   )r/   r   r   r   r   r   r    r!   r"   r#   r   rd   r%   r&   r(   r0   s                  r1   r.   #PassiveAggressiveRegressor.__init__  sP    $ 	') 3-%! 	 	
" 	r3   r4   c                     [        U S5      (       d  U R                  SS9  U R                  S:X  a  SOSnU R                  UUSU R                  SUSS	S	S	S
9
$ )a!  Fit linear model with Passive Aggressive algorithm.

Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
    Subset of training data.

y : numpy array of shape [n_samples]
    Subset of target values.

Returns
-------
self : object
    Fitted estimator.
coef_Tr8   ra   r;   r<   r   r   N)r=   r   r   r>   r   r@   rA   rB   )rC   rD   r   rF   r   )r/   rG   rH   rI   s       r1   rJ   &PassiveAggressiveRegressor.partial_fit  so    " tW%%&&t&<ii#88Ue  ff& ! 
 	
r3   c                     U R                  5         U R                  S:X  a  SOSnU R                  UUSU R                  SUUUS9$ )a  Fit linear model with Passive Aggressive algorithm.

Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
    Training data.

y : numpy array of shape [n_samples]
    Target values.

coef_init : array, shape = [n_features]
    The initial coefficients to warm-start the optimization.

intercept_init : array, shape = [1]
    The initial intercept to warm-start the optimization.

Returns
-------
self : object
    Fitted estimator.
ra   r;   r<   r   rM   rN   rP   s         r1   rQ   PassiveAggressiveRegressor.fit  sU    . 	""$ii#88Ueyyff&)  	
 		
r3   rS   rT   )rU   rV   rW   rX   rY   r   r   r   r   r   rZ   r[   r	   r.   r   rJ   rQ   r\   r]   r^   s   @r1   r`   r`   :  s    N`$

1
1$24QRSTtQW56T1d6:;	$D  "!$ $L 5
 6
B 5"
 6"
r3   r`   N)numbersr   baser   utils._param_validationr   r   _stochastic_gradientr	   r
   r   r   r`    r3   r1   <module>rr      s5      : V Vl
"3 l
^	C
!1 C
r3   