
    -i8X                         S r SSKJrJr  SSKrSSKJr  SSKJ	r	  SSK
Jr  SSKJrJrJrJr  SS	KJr  SS
KJr  SSKJr  SSKJr  SSKJrJr  SSKJrJr  SSKJ r J!r!J"r"   " S S\\\5      r#g)z%Kernel Principal Components Analysis.    )IntegralRealN)linalg)eigh)eigsh   )BaseEstimatorClassNamePrefixFeaturesOutMixinTransformerMixin_fit_context)NotFittedError)pairwise_kernels)KernelCenterer)_init_arpack_v0)Interval
StrOptions)_randomized_eigshsvd_flip)_check_psd_eigenvaluescheck_is_fittedvalidate_datac                     ^  \ rS rSr% Sr0 S\" \SSSS9S/_S\" 1 S	k5      \/_S
\" \	SSSS9S/_S\" \	SSSS9/_S\" \	SSSS9/_S\
S/_S\" \	SSSS9/_SS/_S\" 1 Sk5      /_S\" \	SSSS9/_S\" \SSSS9S/_S\" \SSSS9\" S15      /_SS/_SS/_SS/_SS\/_r\
\S'    S0SSSSSS S!SSSSS!SS"SS#.S$ jjrS0S% jrS& rS' r\" S"S(9S0S) j5       rS0S* jrS+ rS, rU 4S- jr\S. 5       rS/rU =r$ )1	KernelPCA    u   Kernel Principal component analysis (KPCA).

Non-linear dimensionality reduction through the use of kernels [1]_, see also
:ref:`metrics`.

It uses the :func:`scipy.linalg.eigh` LAPACK implementation of the full SVD
or the :func:`scipy.sparse.linalg.eigsh` ARPACK implementation of the
truncated SVD, depending on the shape of the input data and the number of
components to extract. It can also use a randomized truncated SVD by the
method proposed in [3]_, see `eigen_solver`.

For a usage example and comparison between
Principal Components Analysis (PCA) and its kernelized version (KPCA), see
:ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py`.

For a usage example in denoising images using KPCA, see
:ref:`sphx_glr_auto_examples_applications_plot_digits_denoising.py`.

Read more in the :ref:`User Guide <kernel_PCA>`.

Parameters
----------
n_components : int, default=None
    Number of components. If None, all non-zero components are kept.

kernel : {'linear', 'poly', 'rbf', 'sigmoid', 'cosine', 'precomputed'}             or callable, default='linear'
    Kernel used for PCA.

gamma : float, default=None
    Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other
    kernels. If ``gamma`` is ``None``, then it is set to ``1/n_features``.

degree : float, default=3
    Degree for poly kernels. Ignored by other kernels.

coef0 : float, default=1
    Independent term in poly and sigmoid kernels.
    Ignored by other kernels.

kernel_params : dict, default=None
    Parameters (keyword arguments) and
    values for kernel passed as callable object.
    Ignored by other kernels.

alpha : float, default=1.0
    Hyperparameter of the ridge regression that learns the
    inverse transform (when fit_inverse_transform=True).

fit_inverse_transform : bool, default=False
    Learn the inverse transform for non-precomputed kernels
    (i.e. learn to find the pre-image of a point). This method is based
    on [2]_.

eigen_solver : {'auto', 'dense', 'arpack', 'randomized'},             default='auto'
    Select eigensolver to use. If `n_components` is much
    less than the number of training samples, randomized (or arpack to a
    smaller extent) may be more efficient than the dense eigensolver.
    Randomized SVD is performed according to the method of Halko et al
    [3]_.

    auto :
        the solver is selected by a default policy based on n_samples
        (the number of training samples) and `n_components`:
        if the number of components to extract is less than 10 (strict) and
        the number of samples is more than 200 (strict), the 'arpack'
        method is enabled. Otherwise the exact full eigenvalue
        decomposition is computed and optionally truncated afterwards
        ('dense' method).
    dense :
        run exact full eigenvalue decomposition calling the standard
        LAPACK solver via `scipy.linalg.eigh`, and select the components
        by postprocessing
    arpack :
        run SVD truncated to n_components calling ARPACK solver using
        `scipy.sparse.linalg.eigsh`. It requires strictly
        0 < n_components < n_samples
    randomized :
        run randomized SVD by the method of Halko et al. [3]_. The current
        implementation selects eigenvalues based on their module; therefore
        using this method can lead to unexpected results if the kernel is
        not positive semi-definite. See also [4]_.

    .. versionchanged:: 1.0
       `'randomized'` was added.

tol : float, default=0
    Convergence tolerance for arpack.
    If 0, optimal value will be chosen by arpack.

max_iter : int, default=None
    Maximum number of iterations for arpack.
    If None, optimal value will be chosen by arpack.

iterated_power : int >= 0, or 'auto', default='auto'
    Number of iterations for the power method computed by
    svd_solver == 'randomized'. When 'auto', it is set to 7 when
    `n_components < 0.1 * min(X.shape)`, other it is set to 4.

    .. versionadded:: 1.0

remove_zero_eig : bool, default=False
    If True, then all components with zero eigenvalues are removed, so
    that the number of components in the output may be < n_components
    (and sometimes even zero due to numerical instability).
    When n_components is None, this parameter is ignored and components
    with zero eigenvalues are removed regardless.

random_state : int, RandomState instance or None, default=None
    Used when ``eigen_solver`` == 'arpack' or 'randomized'. Pass an int
    for reproducible results across multiple function calls.
    See :term:`Glossary <random_state>`.

    .. versionadded:: 0.18

copy_X : bool, default=True
    If True, input X is copied and stored by the model in the `X_fit_`
    attribute. If no further changes will be done to X, setting
    `copy_X=False` saves memory by storing a reference.

    .. versionadded:: 0.18

n_jobs : int, default=None
    The number of parallel jobs to run.
    ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
    ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
    for more details.

    .. versionadded:: 0.18

Attributes
----------
eigenvalues_ : ndarray of shape (n_components,)
    Eigenvalues of the centered kernel matrix in decreasing order.
    If `n_components` and `remove_zero_eig` are not set,
    then all values are stored.

eigenvectors_ : ndarray of shape (n_samples, n_components)
    Eigenvectors of the centered kernel matrix. If `n_components` and
    `remove_zero_eig` are not set, then all components are stored.

dual_coef_ : ndarray of shape (n_samples, n_features)
    Inverse transform matrix. Only available when
    ``fit_inverse_transform`` is True.

X_transformed_fit_ : ndarray of shape (n_samples, n_components)
    Projection of the fitted data on the kernel principal components.
    Only available when ``fit_inverse_transform`` is True.

X_fit_ : ndarray of shape (n_samples, n_features)
    The data used to fit the model. If `copy_X=False`, then `X_fit_` is
    a reference. This attribute is used for the calls to transform.

n_features_in_ : int
    Number of features seen during :term:`fit`.

    .. versionadded:: 0.24

feature_names_in_ : ndarray of shape (`n_features_in_`,)
    Names of features seen during :term:`fit`. Defined only when `X`
    has feature names that are all strings.

    .. versionadded:: 1.0

gamma_ : float
    Kernel coefficient for rbf, poly and sigmoid kernels. When `gamma`
    is explicitly provided, this is just the same as `gamma`. When `gamma`
    is `None`, this is the actual value of kernel coefficient.

    .. versionadded:: 1.3

See Also
--------
FastICA : A fast algorithm for Independent Component Analysis.
IncrementalPCA : Incremental Principal Component Analysis.
NMF : Non-Negative Matrix Factorization.
PCA : Principal Component Analysis.
SparsePCA : Sparse Principal Component Analysis.
TruncatedSVD : Dimensionality reduction using truncated SVD.

References
----------
.. [1] `Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller.
   "Kernel principal component analysis."
   International conference on artificial neural networks.
   Springer, Berlin, Heidelberg, 1997.
   <https://people.eecs.berkeley.edu/~wainwrig/stat241b/scholkopf_kernel.pdf>`_

.. [2] `Bakır, Gökhan H., Jason Weston, and Bernhard Schölkopf.
   "Learning to find pre-images."
   Advances in neural information processing systems 16 (2004): 449-456.
   <https://papers.nips.cc/paper/2003/file/ac1ad983e08ad3304a97e147f522747e-Paper.pdf>`_

.. [3] :arxiv:`Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp.
   "Finding structure with randomness: Probabilistic algorithms for
   constructing approximate matrix decompositions."
   SIAM review 53.2 (2011): 217-288. <0909.4061>`

.. [4] `Martinsson, Per-Gunnar, Vladimir Rokhlin, and Mark Tygert.
   "A randomized algorithm for the decomposition of matrices."
   Applied and Computational Harmonic Analysis 30.1 (2011): 47-68.
   <https://www.sciencedirect.com/science/article/pii/S1063520310000242>`_

Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.decomposition import KernelPCA
>>> X, _ = load_digits(return_X_y=True)
>>> transformer = KernelPCA(n_components=7, kernel='linear')
>>> X_transformed = transformer.fit_transform(X)
>>> X_transformed.shape
(1797, 7)
n_components   Nleft)closedkernel>   rbfpolycosinelinearsigmoidprecomputedgammar   degreecoef0neitherkernel_paramsalphafit_inverse_transformbooleaneigen_solver>   autodensearpack
randomizedtolmax_iteriterated_powerr/   remove_zero_eigrandom_statecopy_Xn_jobs_parameter_constraintsr#      g      ?FT)r   r&   r'   r(   r*   r+   r,   r.   r3   r4   r5   r6   r7   r8   r9   c                    Xl         X l        X`l        X0l        X@l        XPl        Xpl        Xl        Xl        Xl	        Xl
        Xl        Xl        Xl        UU l        Xl        g N)r   r   r*   r&   r'   r(   r+   r,   r.   r3   r4   r5   r6   r7   r9   r8   )selfr   r   r&   r'   r(   r*   r+   r,   r.   r3   r4   r5   r6   r7   r8   r9   s                    T/var/www/html/venv/lib/python3.13/site-packages/sklearn/decomposition/_kernel_pca.py__init__KernelPCA.__init__  s]    ( )*


%:"( ,.(    c                     [        U R                  5      (       a  U R                  =(       d    0 nO$U R                  U R                  U R
                  S.n[        X4U R                  SU R                  S.UD6$ )N)r&   r'   r(   T)metricfilter_paramsr9   )callabler   r*   gamma_r'   r(   r   r9   )r>   XYparamss       r?   _get_kernelKernelPCA._get_kernel?  se    DKK  ''-2F#{{dkkDJJWF
D
PV
 	
rB   c           	         U R                   R                  U5      R                  USS9nU R                  c  UR                  S   nO#[        UR                  S   U R                  5      nU R                  S:X  a  UR                  S   S:  a	  US:  a  SnOS	nOU R                  nUS	:X  a9  [        XR                  S   U-
  UR                  S   S
-
  4S9u  U l        U l	        OUS:X  aR  [        UR                  S   U R                  5      n[        XSU R                  U R                  US9u  U l        U l	        O4US:X  a.  [        UUU R                   U R                  SS9u  U l        U l	        [#        U R                  SS9U l        [%        U R                  SS9u  U l	        nU R                  R'                  5       SSS2   nU R                  U   U l        U R                  SS2U4   U l	        U R(                  (       d  U R                  cF  U R                  SS2U R                  S:  4   U l	        U R                  U R                  S:     U l        U$ )zFit's using kernel KF)copyNr   r/      
   r1   r0   r   )subset_by_indexLA)whichr3   maxiterv0r2   module)r   n_iterr7   	selection)enable_warnings)uv)	_centererfit	transformr   shapeminr.   r   eigenvalues_eigenvectors_r   r7   r   r3   r4   r   r5   r   r   argsortr6   )r>   Kr   r.   rU   _indicess          r?   _fit_transform_in_place!KernelPCA._fit_transform_in_placeH  s;    NNq!++AE+: $771:Lqwwqz4+<+<=L &wwqzCL2$5'&,,L7"48GGAJ$=qwwqzA~#N51Dt1 X% T->->?B49t4==UW51Dt1 \)4E)**!.."51Dt1 3u

 !)4+=+= FA ##++-dd3 --g6!//7
; 4#4#4#<!%!3!3At7H7H17L4L!MD $ 1 1$2C2Ca2G HD* rB   c                    [        US5      (       a  [        S5      eUR                  S   nU R                  U5      nUR                  S S US-   2==   U R
                  -  ss'   [        R                  " XBSSS9U l        Xl	        g )Ntocsrz6Inverse transform not implemented for sparse matrices!r   r   posT)assume_aoverwrite_a)
hasattrNotImplementedErrorr`   rK   flatr+   r   solve
dual_coef_X_transformed_fit_)r>   X_transformedrH   	n_samplesre   s        r?   _fit_inverse_transform KernelPCA._fit_inverse_transform  s}    1g%H  "''*	]+	)a- DJJ.  ,,qeN"/rB   )prefer_skip_nested_validationc                    U R                   (       a  U R                  S:X  a  [        S5      e[        XSU R                  S9nU R
                  c  SUR                  S   -  OU R
                  U l        [        5       R                  SS9U l
        U R                  U5      nU R                  U5        U R                   (       a>  U R                  [        R                  " U R                   5      -  nU R#                  XA5        Xl        U $ )al  Fit the model from data in X.

Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
    Training vector, where `n_samples` is the number of samples
    and `n_features` is the number of features.

y : Ignored
    Not used, present for API consistency by convention.

Returns
-------
self : object
    Returns the instance itself.
r%   z7Cannot fit_inverse_transform with a precomputed kernel.csr)accept_sparserN   r   default)r_   )r,   r   
ValueErrorr   r8   r&   r`   rG   r   
set_outputr]   rK   rh   rc   npsqrtrb   rw   X_fit_)r>   rH   yre   ru   s        r?   r^   KernelPCA.fit  s    $ %%$++*FVWW$T[[I(,

(:a!''!*n

')44y4IQ 	$$Q'%% ..9J9J1KKM''9rB   c                     U R                   " U40 UD6  U R                  [        R                  " U R                  5      -  nU R
                  (       a  U R                  XA5        U$ )a  Fit the model from data in X and transform X.

Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
    Training vector, where `n_samples` is the number of samples
    and `n_features` is the number of features.

y : Ignored
    Not used, present for API consistency by convention.

**params : kwargs
    Parameters (keyword arguments) and values passed to
    the fit_transform instance.

Returns
-------
X_new : ndarray of shape (n_samples, n_components)
    Transformed values.
)r^   rc   r   r   rb   r,   rw   )r>   rH   r   rJ   ru   s        r?   fit_transformKernelPCA.fit_transform  sS    * 	f **RWWT5F5F-GG%%''9rB   c                    [        U 5        [        XSSS9nU R                  R                  U R	                  XR
                  5      5      n[        R                  " U R                  5      n[        R                  " U R                  5      nU R                  SS2U4   [        R                  " U R                  U   5      -  USS2U4'   [        R                  " X$5      $ )a  Transform X.

Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
    Training vector, where `n_samples` is the number of samples
    and `n_features` is the number of features.

Returns
-------
X_new : ndarray of shape (n_samples, n_components)
    Projection of X in the first principal components, where `n_samples`
    is the number of samples and `n_components` is the number of the components.
r{   F)r|   resetN)r   r   r]   r_   rK   r   r   flatnonzerorb   
zeros_likerc   r   dot)r>   rH   re   	non_zerosscaled_alphass        r?   r_   KernelPCA.transform  s     	$eD NN$$T%5%5a%EF NN4#4#45	d&8&89&*&8&8I&Fi(J
 '
al#
 vva''rB   c                     U R                   (       d  [        S5      eU R                  XR                  5      n[        R
                  " X R                  5      $ )u  Transform X back to original space.

``inverse_transform`` approximates the inverse transformation using
a learned pre-image. The pre-image is learned by kernel ridge
regression of the original data on their low-dimensional representation
vectors.

.. note:
    :meth:`~sklearn.decomposition.fit` internally uses a centered
    kernel. As the centered kernel no longer contains the information
    of the mean of kernel features, such information is not taken into
    account in reconstruction.

.. note::
    When users want to compute inverse transformation for 'linear'
    kernel, it is recommended that they use
    :class:`~sklearn.decomposition.PCA` instead. Unlike
    :class:`~sklearn.decomposition.PCA`,
    :class:`~sklearn.decomposition.KernelPCA`'s ``inverse_transform``
    does not reconstruct the mean of data when 'linear' kernel is used
    due to the use of centered kernel.

Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_components)
    Training vector, where `n_samples` is the number of samples
    and `n_features` is the number of features.

Returns
-------
X_original : ndarray of shape (n_samples, n_features)
    Original data, where `n_samples` is the number of samples
    and `n_features` is the number of features.

References
----------
`Bakır, Gökhan H., Jason Weston, and Bernhard Schölkopf.
"Learning to find pre-images."
Advances in neural information processing systems 16 (2004): 449-456.
<https://papers.nips.cc/paper/2003/file/ac1ad983e08ad3304a97e147f522747e-Paper.pdf>`_
z|The fit_inverse_transform parameter was not set to True when instantiating and hence the inverse transform is not available.)r,   r   rK   rt   r   r   rs   )r>   rH   re   s      r?   inverse_transformKernelPCA.inverse_transform  sK    T )) :  Q 7 78vva))rB   c                    > [         TU ]  5       nSUR                  l        SS/UR                  l        U R                  S:H  UR                  l        U$ )NTfloat64float32r%   )super__sklearn_tags__
input_tagssparsetransformer_tagspreserves_dtyper   pairwise)r>   tags	__class__s     r?   r   KernelPCA.__sklearn_tags__9  sI    w')!%1:I0F-#';;-#? rB   c                 4    U R                   R                  S   $ )z&Number of transformed output features.r   )rb   r`   )r>   s    r?   _n_features_outKernelPCA._n_features_out@  s       &&q))rB   )r   rt   r]   r+   r(   r8   r'   rs   r.   rb   rc   r,   r&   rG   r5   r   r*   r4   r   r9   r7   r6   r3   r=   )__name__
__module____qualname____firstlineno____doc__r   r   r   rF   r   dictr:   __annotations__r@   rK   rh   rw   r   r^   r   r_   r   r   propertyr   __static_attributes____classcell__)r   s   @r?   r   r       s$   Un $Xq$v6
 $
 	TU
 $ 	T1d62
 $ 	8D!T&9: $ 	(4tI>? $ 	$ $  	(4D89! $" 	 )# $$ 	$MNO% $& 	q$v67' $( 	Xq$v6
) $0 	Xq$v6x 
1 $8 	I;9 $: 	(; $< 	9+= $> 	4"? $D  H # #%#J
L\
0 5" 6"H>(>2*h * *rB   r   )$r   numbersr   r   numpyr   scipyr   scipy.linalgr   scipy.sparse.linalgr   baser	   r
   r   r   
exceptionsr   metrics.pairwiser   preprocessingr   utils._arpackr   utils._param_validationr   r   utils.extmathr   r   utils.validationr   r   r   r    rB   r?   <module>r      sU    +
 #    %  ( / * + : 7 c*/1A= c*rB   